
40 COMPUTERS IN EDUCATION JOURNAL

Table 2. Program-Level Learning Outcomes
Developed by CS/SE Faculty at North Carolina

State University.

Program-Level Learning Outcomes

To demonstrate that graduates can reason effectively
about computing and develop software, they should be
able to:

1. Identify and define abstract computing models that
could provide a basis for solving a given problem
and analyze them for their potential and limitations
for a solution.

2. Prove mathematically the characteristics and

limitations of an abstract model of computation
with respect to the ability to solve specific abstract
problems and/or to do so efficiently; inherent in
this ability is the mastery of techniques such as (a)
decomposing and synthesizing instances, (b)
providing the equivalence of different models, (c)
searching for patterns in the various instances, (d)
proving that certain patterns fit the model and
others do not fit the model, and (e) determining the
extent to which a model can solve the problem and
solve it with acceptable use of resources as defined
mathematically.

3. Develop efficient algorithms and data structures for

solving a problem and identify other problems or
algorithms to which these apply.

4. Recognize and define a problem related to a

specific scenario that can be solved with a software
application. Describe how the end-users or internal
actors within a system intend to use the application
to be developed. Gather and analyze information
that allows for requirements that will solve the
problem to be created; validated; verified; and, if
necessary, revised.

5. Create and express a design for an underlying

abstract model of computation that accommodates
defined system requirements—including
considerations of privacy, security, and
efficiency—so that a developer can implement the
application. Review the design to ensure it can
accomplish the requirements and, where it does
not, redesign until it meets the requirements.

6. Implement software conforming to a specified

design so that it is usable, testable and modifiable
by others. Review the implementation to ensure it
meets the system requirements and conforms to
design and, where it does not, correct the
implementation until it meets the requirements and
design.

7. Plan and execute appropriate tests in order to

identify ways in which the software does not meet
the requirements and, where it does not, to
redesign, implement and retest until it meets the
requirements.

The following communication outcomes are derived
from the general program outcomes above. By achieving
these communication outcomes, students both learn to do
what is described in the general outcomes and
demonstrate that they have attained those outcomes.

To demonstrate that graduates have achieved the
general program learning outcomes, they should be
able to:

1. Present in writing or orally an abstract model that
could be used to solve a real-world application
problem so that the presentation could be
understood by stakeholders.

2. Write a mathematical proof related to an abstract

model of computation so that it can be understood
by an audience with sufficient mathematical
maturity (ability to understand proofs by induction,
contradiction, etc.)

3. Present in writing or orally the reasoning they have

applied in creating a mathematical proof related to
an abstract model of computation so that it can be
understood by someone acquainted with an
application of the model.

4. Present in writing or orally a description of how an

abstract model of computation can be productively
applied to solving a problem related to software
engineering in another area of computer science or
in another field

5. Present in writing or orally a critical assessment of

a problem situation defined by a need for software
to be developed for solving the problem: (a)
collect information from sponsors, end-users, and
on-site observations; (b) analyze that information;
(c) use the analysis to define the problem in terms
of the stakeholders’ needs and goals for addressing
those needs

6. Write requirements representing the stakeholders’

needs and goals in such a way that the
requirements can be applied in a design by others

7. Read requirements for various purposes, such as to

inspect and correct them, to validate them as
meeting the user’s needs, to revise them so that
they better meet user’s needs, to implement them in
a design, and to identify what students don’t know
and what they need to know to create code.

e24336
Highlight

COMPUTERS IN EDUCATION JOURNAL 41

8. Write a design that accommodates the defined

system requirements—including considerations of
privacy, security, and efficiency—so that a
developer can implement the application.

9. Read a design for various purposes, such as to

ensure it can accomplish the requirements and,
where it does not, redesign until it meets the
requirements and to translate it into code.

10. Write a program to conform to a specified design

so that it is usable, testable, and modifiable by
others.

11. Write a narrative description of code, including a

list of file names or directories included.

12. Read code and comments for various purposes, to

find and correct errors in syntax and semantics, to
determine what a program is supposed to do, to
revise a program so that it accomplishes what it is
supposed to do, to modify a program for different
purposes, to ensure that a program conforms to
system requirements and conforms to design, to
provide productive feedback to those who created
it, to continue a program begun by someone else,
and to apply it to new uses.

13. Write a developer guide that is appropriate to the

audience.

14. Write a user guide that is appropriate to the

audience.

15. Present in writing or orally a test plan and results

of testing that identifies ways in which the software
does not meet the requirements.

16. Present in writing or orally progress reports that

describe advancements and difficulties in a
software development project.

17. Present in writing and orally a full technical report

describing a software development project.

18. Read technical literature in the field for various

purposes, such as to summarize, to analyze it, to
answer a technical question, and to solve a
technical problem.

19. Present in writing or orally a research report that

solves a technical problem based on an analysis of
literature in the field.

20. Work effectively in teams: (a) develop ground

rules to guide the team’s approach to work; (b)
define roles so that expectations of team members

are clear and followed; (c) create agendas and
minutes for team meetings; (d) interact with other
team members in ways that assure the productive
contributions of all team members; (e) create
specific action items for each member and then
hold him or her accountable; (f) identify, create,
and manage the tools that enable teams to work
effectively; (g) resolve conflicts among team
members.

For the CS2 course, faculty also developed new

communication-centric outcomes:

• Interpret a UML diagram and explain its

relationship to a problem statement.
• Read and understand code written by people

other than themselves.
• Use a problem statement to define a set of

software requirements.
• Explain how a final software implementation

deviated from their original design.
• Follow good programming style and

documentation conventions to write code that
is easily understandable and extensible.

• Explain issues encountered and progress made
during a software development project.

In these examples, not all categories of

communication skills were explicitly required. For
instance, none of the outcomes address teaming or
explicitly involve speaking. One of the advantages
of distributing communication skills across the
curriculum is that it is not required that every class
address every skill. For example, teaming might not
be desired in lower level programming classes where
students must program on their own to master
critical skills, and classes taught in large sections
will not be able to manage the logistics of students
presenting in class. In the former, it is still possible
to have students team in a lab setting and in the latter
students could still practice speaking in small
groups.

Each institution distributes skills across their

curriculum in different ways so it would not be
practical to produce definitive lists of SLOs for each
course involved in this project, but we will produce
examples from Miami University and from North
Carolina State University as well as instructions on
how existing outcomes can be tailored to add
communication skills.

